Section 5.1

Math 231

Hope College

Eigenvectors and Eigenvalues

- Let V be a vector space and f: V → V a linear transformation. A nonzero vector x ∈ V such that f(x) = λx for some scalar λ is called an eigenvector of f. The scalar λ is called the eigenvalue of f associated to the eigenvector x.
- We will see several examples of eigenvalues and eigenvectors in class.

Eigenvectors and Eigenvalues

- Let V be a vector space and f: V → V a linear transformation. A nonzero vector x ∈ V such that f(x) = λx for some scalar λ is called an eigenvector of f. The scalar λ is called the eigenvalue of f associated to the eigenvector x.
- We will see several examples of eigenvalues and eigenvectors in class.

Eigenspaces

• Given an eigenvalue λ of f, we define

$$E_{\lambda} = \{ \mathbf{x} \in V \, | \, f(\mathbf{x}) = \lambda \mathbf{x} \}.$$

The set E_{λ} is called the **eigenspace** associated to the eigenvalue λ .

 Theorem 5.7: For every eigenvalue λ of f, the set E_λ is a subspace of V.

Eigenspaces

• Given an eigenvalue λ of f, we define

$$E_{\lambda} = \{ \mathbf{x} \in V \, | \, f(\mathbf{x}) = \lambda \mathbf{x} \}.$$

The set E_{λ} is called the **eigenspace** associated to the eigenvalue λ .

 Theorem 5.7: For every eigenvalue λ of f, the set E_λ is a subspace of V.

Linear Independence of Eigenvectors

- Theorem 5.5: Let f: V → V be a linear transformation on a vector space V.
 - Let $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a set of eigenvectors of f with associated eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$, respectively. If the numbers λ_j are all distinct, then S is a linearly independent set.
 - 2 If dim V = n, then f has at most n distinct eigenvalues.
- A consequence of this theorem is that if dim V = n and f has n distinct eigenvalues, the set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ of eigenvectors associated to these eigenvalues will be a basis of V.

Linear Independence of Eigenvectors

- Theorem 5.5: Let f: V → V be a linear transformation on a vector space V.
 - Let $S = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_k\}$ be a set of eigenvectors of f with associated eigenvalues $\{\lambda_1, \lambda_2, \dots, \lambda_k\}$, respectively. If the numbers λ_j are all distinct, then S is a linearly independent set.
 - ② If dim V = n, then f has at most n distinct eigenvalues.
- A consequence of this theorem is that if dim V = n and f has n distinct eigenvalues, the set $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ of eigenvectors associated to these eigenvalues will be a basis of V.

Finding Eigenvalues

- Given a square matrix A, we can find the eigenvalues of the matrix A, that is, the eigenvalues of the linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ defined by $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ for all $\vec{\mathbf{x}} \in \mathbb{R}^n$.
- We find the eigenvalues of A by solving $p_A(\lambda) = 0$, where $p_A(\lambda)$ is the **characteristic polynomial** of A:

$$p_A(\lambda) = \det(A - \lambda I_n).$$

• If V is a finite dimensional vector space and $f: V \to V$ is a linear transformation, then the eigenvalues of f can be found using the matrix $[f]_{\mathcal{B}}^{\mathcal{B}}$ for any basis \mathcal{B} of V.

Finding Eigenvalues

- Given a square matrix A, we can find the eigenvalues of the matrix A, that is, the eigenvalues of the linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ defined by $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ for all $\vec{\mathbf{x}} \in \mathbb{R}^n$.
- We find the eigenvalues of A by solving $p_A(\lambda) = 0$, where $p_A(\lambda)$ is the **characteristic polynomial** of A:

$$p_A(\lambda) = \det(A - \lambda I_n).$$

• If V is a finite dimensional vector space and $f: V \to V$ is a linear transformation, then the eigenvalues of f can be found using the matrix $[f]_{\mathcal{B}}^{\mathcal{B}}$ for any basis \mathcal{B} of V.

Finding Eigenvalues

- Given a square matrix A, we can find the eigenvalues of the matrix A, that is, the eigenvalues of the linear transformation $f: \mathbb{R}^n \to \mathbb{R}^n$ defined by $f(\vec{\mathbf{x}}) = A\vec{\mathbf{x}}$ for all $\vec{\mathbf{x}} \in \mathbb{R}^n$.
- We find the eigenvalues of A by solving $p_A(\lambda) = 0$, where $p_A(\lambda)$ is the **characteristic polynomial** of A:

$$p_A(\lambda) = \det(A - \lambda I_n).$$

• If V is a finite dimensional vector space and $f: V \to V$ is a linear transformation, then the eigenvalues of f can be found using the matrix $[f]_{\mathcal{B}}^{\mathcal{B}}$ for any basis \mathcal{B} of V.

